Abstract
Not all blockchains are created equal, and many cannot accommodate all of the primary characteristics of big data: Variety, Velocity, Volume and Veracity. Currently, public blockchains are slow and clunky, it can be expensive to keep up with the velocity of genomic data production. Further, the transparent and universally accessible nature of public blockchain doesn't necessarily accommodate all of the variety of sequence data, including very private information. Bespoke private permissioned blockchains, however, can be created to optimally accommodate all of the big data features of genomic data. Further, private permissioned chains can be implemented to both protect the privacy and security of the genetic information therein, while also providing access to researchers. An NFT marketplace associated with that private chain can provide the discretized sale of anonymous and encrypted data sets while also incentivizing individuals to share their data through payments mediated by smart contracts. Private blockchains can provide a transparent chain of custody for each use of the customers' data, and validation that this data is not corrupted. However, even with all of these benefits there remain some concerns with the implementation of this new technology including the ethical, legal and social implications typically associated with DNA databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.