Abstract
By leveraging blockchain, this letter proposes a blockchained federated learning (BlockFL) architecture where local learning model updates are exchanged and verified. This enables on-device machine learning without any centralized training data or coordination by utilizing a consensus mechanism in blockchain. Moreover, we analyze an end-to-end latency model of BlockFL and characterize the optimal block generation rate by considering communication, computation, and consensus delays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.