Abstract

Metal-organic frameworks (MOF) have attracted extensive attention due to their ultra-high specific surface area and tunable structure, the mechanism of direct utilization for capacitive deionization (CDI) defluorination remains undefined. Here, MIL-101(Cr) with ultra-high specific surface area, high water stability, and open metal sites (OMSs) is prepared by a hydrothermal method for defluorination of CDI. Carbon black is used as a "chain" to connect F-stored in the holes of MIL-101(Cr) (Cr-MOF)as "blocks" to enhance the conductivity and ion storage capacity of MIL-101(Cr)/carbon black electrodes (Cr-MOF electrodes). This simple construction method avoids the process complexity of in situ synthesis and performs better. These easily constructed "blockchain-like" Cr-MOF electrodes exhibit excellent defluorination capacity (39.84 mgNaF gelectrodes -1 ), low energy consumption (1.2kWh kgNaF -1 ), and good stability. The coupling of the electrochemical redox reaction of Cr3+ /Cr4+ with confined water is investigated using in situ and ex situ analysis methods combined with density functional theory (DFT), resulting in an unprecedented defluorination mechanism for Cr-MOF electrodes. This study opens up new ideas for the application of MOF in CDI, clarifies the removal mechanism of MOF, and lays a foundation for further promoting the application of raw materials with poor conductivity in the field of CDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.