Abstract

The integration of Internet of Things devices onto the Blockchain implies an increase in the transactions that occur on the Blockchain, thus increasing the storage requirements. A solution approach is to leverage cloud resources for storing blocks within the chain. The paper, therefore, proposes two solutions to this problem. The first being an improved hybrid architecture design which uses containerization to create a side chain on a fog node for the devices connected to it and an Advanced Time-variant Multi-objective Particle Swarm Optimization Algorithm (AT-MOPSO) for determining the optimal number of blocks that should be transferred to the cloud for storage. This algorithm uses time-variant weights for the velocity of the particle swarm optimization and the non-dominated sorting and mutation schemes from NSGA-III. The proposed algorithm was compared with results from the original MOPSO algorithm, the Strength Pareto Evolutionary Algorithm (SPEA-II), and the Pareto Envelope-based Selection Algorithm with region-based selection (PESA-II), and NSGA-III. The proposed AT-MOPSO showed better results than the aforementioned MOPSO algorithms in cloud storage cost and query probability optimization. Importantly, AT-MOPSO achieved 52% energy efficiency compared to NSGA-III. To show how this algorithm can be applied to a real-world Blockchain system, the BISS industrial Blockchain architecture was adapted and modified to show how the AT-MOPSO can be used with existing Blockchain systems and the benefits it provides.

Highlights

  • Blockchain has gained tremendous traction over the past decade due to its remarkable contribution to cryptocurrency

  • We proposed a hybrid Blockchain-Internet of Things (IoT) integration scheme that used fog computing and cloud storage to help improve the throughput of such applications

  • To select the number of blocks that should be sent to the cloud, we further proposed an Advanced Time-Variant Multi-Objective Particle Swarm Optimization (AT-MOPSO) algorithm to help solve the block selection problem

Read more

Summary

Introduction

Blockchain has gained tremendous traction over the past decade due to its remarkable contribution to cryptocurrency. The emergence of Blockchain as a distributed ledger technology led to its application in areas such as healthcare [1, 2], supply chain management [3], education [4], real estate [5] as well as Internet of Things (IoT) [6]. Blockchain varies from centralized digital databases and ledgers because it harnesses the concept of community validation to synchronize the entries that go into the ledger. It further works via a distributed model to replicate the updated ledger to all the nodes and users involved in the network [7]. The scalability setback, which includes low throughput, resource-intensive computations, and high latency, has dramatically hindered practical Blockchain-based applications

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.