Abstract

This paper investigates the evolving landscape of blockchain technology in renewable energy. The study, based on a Scopus database search on 21 February 2024, reveals a growing trend in scholarly output, predominantly in engineering, energy, and computer science. The diverse range of source types and global contributions, led by China, reflects the interdisciplinary nature of this field. This comprehensive review delves into 33 research papers, examining the integration of blockchain in renewable energy systems, encompassing decentralized power dispatching, certificate trading, alternative energy selection, and management in applications like intelligent transportation systems and microgrids. The papers employ theoretical concepts such as decentralized power dispatching models and permissioned blockchains, utilizing methodologies involving advanced algorithms, consensus mechanisms, and smart contracts to enhance efficiency, security, and transparency. The findings suggest that blockchain integration can reduce costs, increase renewable source utilization, and optimize energy management. Despite these advantages, challenges including uncertainties, privacy concerns, scalability issues, and energy consumption are identified, alongside legal and regulatory compliance and market acceptance hurdles. Overcoming resistance to change and building trust in blockchain-based systems are crucial for successful adoption, emphasizing the need for collaborative efforts among industry stakeholders, regulators, and technology developers to unlock the full potential of blockchains in renewable energy integration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call