Abstract
The smart logistics industry utilizes advanced software and hardware technologies to enhance efficient transmission. By integrating smart components, it identifies vulnerabilities within the logistics sector, making it more susceptible to physical attacks aimed at theft and control. The main goal is to propose an effective logistics monitoring system that automates theft prevention. Specifically, the suggested model analyzes logistics transmission patterns through secure surveillance enabled by IoT-based blockchain technology. Additionally, a bi-directional convolutional neural network is employed to evaluate real-time theft vulnerabilities, aiding optimal decision-making. The proposed method has been shown to provide accurate real-time analysis of risky behaviors. Experimental simulations indicate that the proposed solution significantly improves logistics monitoring. The system’s performance is assessed using various statistical metrics, including latency rate (7.44 s), a data processing cost (O((n−1)logn)), and model training and testing results (precision (94.60%), recall (95.67%), and F-Measure (96.64%)), statistical performance (error reduction (48%)) and reliability (94.48%).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.