Abstract
Despite the large quantities of secondary materials flowing within the built environment, their actual volume and respective waste management processes are not accurately known and recorded. Consequently, various sustainability and material efficiency policies are not supported by accurate data and information-reporting associated with secondary materials’ availability and sourcing. Many recent studies have shown that the integration of digital technologies such as city information management (CIM), building information modeling (BIM), and blockchain have the potential to enhance construction waste management (CWM) by classifying recycled materials and creating value from waste. However, there is insufficient guidance to address the challenges during the process of CWM. Therefore, the research reported in this paper aims to develop a blockchain-enhanced construction waste information management conceptual framework (BeCW). This paper is the first attempt to apply the strengths of integrated information-management modeling with blockchain to optimize the process of CWM, which includes a WasteChain for providing a unified and trustworthy credit system for evaluating construction-waste-recyclability to stakeholders. This is enabled through the use of blockchain and self-executing smart contracts to clarify the responsibility and ownership of the relevant stakeholders. As a result, this study provides a unified and explicit framework for referencing which quantifies the value-contribution of stakeholders to waste-recovery and the optimization of secondary construction materials for reuse and recycling. It also addresses the issue of sustainable CWM through information exchange at four levels: user, application, service, and infrastructure data levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.