Abstract
The amalgamation of heterogeneous generations of mobile cellular networks around the globe has resulted in diverse data speed experiences for end users. At present, there are no defined mechanisms in place for subscribers of a mobile network operator (MNO) to use the services of third-party WiFi providers. MNOs also have no standardized procedures to securely interact with each other, and allow their subscribers to use third-party services on a pay-as-you-go basis. This paper proposes a blockchain-enabled offloading framework that allows a subscriber of a mobile operator to temporarily use another MNO or WiFi provider’s higher-speed network. A smart contract is employed to allow diverse entities, such as MNOs, brokers and WiFi providers, to automatically execute mutual agreements, to enable the utilization of third-party infrastructure in a secure and controlled manner. The proposed framework is tested using Ethereum’s testnet on the Goerli network using Alchemy and Hardhat. The analysis of the results obtained shows that the proposed technique helps mobile operators to offer improved user experience in the form of average speed and latency. The experiments show that the average time taken to deliver a 500 MB file is reduced from 10.23 s to 0.91 s for the global average scenario, from 6.09 s to 0.50 s for 5G, from 13.50 s to 0.50 s for 4G-LTE, from 41.11 s to 0.49 s for 4G, and from 339.11 s to 0.49 s for the 3G scenario. The results also show that, with WiFi offloading, users from all cellular generations can enjoy a similar quality of services, because delivery time ranges from 0.49 s to 0.91 s for offloaded experiments whereas for the non-offloaded scenario it ranges from 6.09 s to 339.11 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.