Abstract

The robust development of the blockchain distributed ledger, the Internet of Things (IoT), and fog computing-enabled connected devices and nodes has changed our lifestyle nowadays. Due to this, the increased rate of device sales and utilization increases the demand for edge computing technology with collaborative procedures. However, there is a well-established paradigm designed to optimize various distinct quality-of-service requirements, including bandwidth, latency, transmission power, delay, duty cycle, throughput, response, and edge sense, and bring computation and data storage closer to the devices and edges, along with ledger security and privacy during transmission. In this article, we present a systematic review of blockchain Hyperledger enabling fog and edge computing, which integrates as an outsourcing computation over the serverless consortium network environment. The main objective of this article is to classify recently published articles and survey reports on the current status in the domain of edge distributed computing and outsourcing computation, such as fog and edge. In addition, we proposed a blockchain-Hyperledger Sawtooth-enabled serverless edge-based distributed outsourcing computation architecture. This theoretical architecture-based solution delivers robust data security in terms of integrity, transparency, provenance, and privacy-protected preservation in the immutable storage to store the outsourcing computational ledgers. This article also highlights the changes between the proposed taxonomy and the current system based on distinct parameters, such as system security and privacy. Finally, a few open research issues and limitations with promising future directions are listed for future research work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.