Abstract

The maturity of the 5th-Generation (5G) communication technology promotes a new round of industrial revolution and supports the high-quality development of economic society. However, owing to the scarce communication resources, costly labor and complex geographic environment, inspecting and maintaining electrical faults accurately and timely in a remote grid is rather challenging. To solve this problem, we comprehensively consider secure and efficient signal transmissions to construct an automatic grid fault inspection system and formulate a multi-objective optimization problem. Due to its complexity, we decompose it into two sub-problems, propose a <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</u> lockchain- <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</u> nabled <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</u> ecure <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</u> ransmission scheme (BEST) and an <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</u> mproved <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</u> arket <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</u> atching (IMM) algorithm, correspondingly. Considering the latency magnitude difference between blockchain verification and intra-domain transmission, the BEST scheme integrates <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</u> eep <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</u> einforcement learning-based <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</u> mproved <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</u> roximal policy optimization training algorithm (DRIP) and <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</u> *-based <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</u> i- <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</u> bjective multi-destination <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</u> ptimization algorithm (ABOO) to achieve the intra-domain secure transmission. Based on the real city topology and the YouTube video service data statistics, our algorithms can optimize the network performance while guaranteeing the security of signal transmissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.