Abstract
With the popularity of Internet of Things (IoT) applications, data sharing among IoT devices has become more frequent. Many researchers have proposed fine-grained access control schemes and searchable encryption algorithms to support privacy-preserving data sharing. But there still exist two challenges. First, the existing schemes are computationally intensive, making them unsuitable for resource-limited IoT terminals. Second, they rely on a central server to honestly conduct search operations, making them unable to tackle malicious servers. To this end, we propose a blockchain-enabled data-sharing scheme for IoT that supports lightweight, secure, and searchable data sharing. We design an outsourcing attribute-based encryption algorithm to alleviate the overhead of resource-limited IoT terminals, which reduces the local encryption and decryption to a constant level. Instead of relying on central servers, we leverage smart contract to execute ciphertext retrieval, ensuring the accuracy of search results. Formal security analysis demonstrates that the proposed scheme is chosen-plaintext secure under the DBDH assumption. Experimental simulation shows that it reduces the search time by at least 79.9%, the encryption and decryption complexities to both O(1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.