Abstract

There are continued advances in the internet and communication fields regarding the deployment of 5G-based applications. It is expected that by 2030, 6G applications will emerge as a continued evolution of the mobile network. Blockchain technology is one of the leading supporting technologies predicted to provide a secure and unique network to 6G-enabled devices, transactions, and applications. It is anticipated that the 6G mobile networks will be virtualized, have cloud-based systems, and aim to be the foundation for the Internet of Everything. However, along with the development of communication technologies, threats from malicious parties have become more sophisticated, making security a significant concern for the 6G era in the future. Despite enormous efforts by researchers to improve security and authentication protocols, systems still face novel intrusion and attacks. Recently, multifactor authentication techniques (MFA) have been deployed as potential solutions to attacks in blockchains. The 6G applications and the cellular network have specific vulnerabilities that need to be addressed using blockchain-based MFA technologies. The current paper is a systematic review that discusses the three technologies under consideration; then, several studies are reviewed that discuss MFA techniques in general and use blockchains as potential solutions to future security and authentication issues that may arise for 6G applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.