Abstract
Blockchain technology is an undeniable ledger technology that stores transactions in high-security chains of blocks. Blockchain can solve security and privacy issues in a variety of domains. With the rapid development of smart environments and complicated contracts between users and intelligent devices, federated learning (FL) is a new paradigm to improve accuracy and precision factors of data mining by supporting information privacy and security. Much sensitive information such as patient health records, safety industrial information, and banking personal information in various domains of the Internet of Things (IoT) including smart city, smart healthcare, and smart industry should be collected and gathered to train and test with high potential privacy and secured manner. Using blockchain technology to the adaption of intelligent learning can influence maintaining and sustaining information security and privacy. Finally, blockchain-based FL mechanisms are very hot topics and cut of scientific edge in data science and artificial intelligence. This research proposes a systematic study on the discussion of privacy and security in the field of blockchain-based FL methodologies on the scientific databases to provide an objective road map of the status of this issue. According to the analytical results of this research, blockchain-based FL has been grown significantly during these 5 years and blockchain technology has been used more to solve problems related to patient healthcare records, image retrieval, cancer datasets, industrial equipment, and economical information in the field of IoT applications and smart environments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.