Abstract
The maturation of wireless connectivity, blockchain (distributed ledger technologies), and intelligent systems has fostered a comprehensive ecosystem for the Internet of Things (IoT). However, the growing volume of data generated by IoT devices creates substantial pressure on blockchain storage and computation capabilities, impeding the further development of the IoT ecosystem. Decentralizing data storage across multiple chains and utilizing cross-chain technology for data exchange eliminates the need for expensive centralized infrastructure, lowers data transfer costs, and improves accessibility. Hence, the issue of computational and storage pressure in blockchain can be improved. Nonetheless, the data of IoT devices are constantly updating, and ensuring consistency for dynamic data across heterogeneous chains remains a significant challenge. To address the aforementioned challenge, we propose a blockchain-based distributed and lightweight data consistency verification model (BDCA), which leverages a batch verification dynamic Merkle hash tree (BV-MHT) and an advanced gamma multi-signature scheme (AGMS) to enable consistent verification of dynamic data while ensuring secure and private data transmission. The AGMS scheme is reliable and robust based on security analysis while the dependability and consistency of BDCA are verified through inductive reasoning. Experimental results indicate that BDCA outperforms CPVPA and Fortress in communication and computation overhead for data preprocessing and auditing in a similar condition, and the AGMS scheme exhibits superior performance when compared to other widely adopted multi-signature schemes such as Cosi, BLS, and RSA. Furthermore, BDCA provides up to 99% data consistency guarantees, demonstrating its practicality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.