Abstract

The advancements in communication speeds have enabled the centralized financial market to be faster and more complex than ever. The speed of the order execution has become exponentially faster when compared to the early days of electronic markets. Though the transaction speed has increased, the underlying architecture or models behind the markets have remained the same. These models come with their own disadvantages. The disadvantages are usually faced by non-institutional or small traders. The bigger players, such as financial institutions, have an advantage over smaller players because of factors such as information asymmetry and access to better infrastructure, which give them an advantage in terms of the speed of execution. This makes the centralized stock market an uneven playing field. This paper discusses the limitations of centralized financial markets, particularly the disadvantage faced by non-institutional or small traders due to information asymmetry and better infrastructure access by financial institutions. The authors propose the usage of blockchain technology and the data highway protocol to create a decentralized stock exchange that can potentially eliminate these disadvantages. The data highway protocol is used to generate new blocks with a flexible finality condition that allows for the consensus mechanism to configure security thresholds more freely. The proposed framework is compared with existing frameworks to confirm its effectiveness and identify areas that require improvement. The evaluation of the proposed approach showed that the improved highway protocol boosted the transaction rate compared to the other two mechanisms (PoS and PoW). Specifically, the transaction rate of the proposed model was found to be 2.2 times higher than that of PoS and 12 times higher than that of the PoW consensus model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.