Abstract

Federated learning combines with fog computing to transform data sharing into model sharing, which solves the issues of data isolation and privacy disclosure in fog computing. However, existing studies focus on centralized single-layer aggregation federated learning architecture, which lack the consideration of cross-domain and asynchronous robustness of federated learning, and rarely integrate verification mechanisms from the perspective of incentives. To address the above challenges, we propose a Blockchain and Signcryption enabled Asynchronous Federated Learning (BSAFL) framework based on dual aggregation for asynchronous cross-domain federated learning scenarios. In particular, we first design two types of signcryption schemes to secure the interaction and access control of collaborative learning between domains. Second, we construct a differential privacy approach that adaptively adjusts privacy budgets to ensure data privacy and local models' availability of intra-domain user. Furthermore, we propose an asynchronous aggregation solution that incorporates consensus verification and elastic participation using blockchain. Finally, security analysis demonstrates the security and privacy effectiveness of BSAFL, and the evaluation on real datasets further validates the high model accuracy and performance of BSAFL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call