Abstract
The Internet of Things (IoTs) has accelerated with the introduction of powerful biomedical sensors, telemedicine services and population ageing are concerns that can be solved by smart healthcare systems. However, the security of medical signal data that collected from sensors of IoTs technology, while it is being transmitted over public channels has grown to be a serious problem that has limited the adoption of intelligent healthcare systems. This suggests using the technology of blockchain to create a safe and reliable heart sound signal (PCG) that can communicate with wireless body area networks. The security plan offers a totally dependable and safe environment for every data flowing from the back end to front-end. Also in this paper, to classify heart sound signals, we suggested a one-dimensional convolutional neural network (1D-CNN) model. The denoising autoencoder extracted the heart sounds' deep features as an input feature of 1D-CNN. To extract the detailed characteristics from the PCG signals, a Data Denoising Auto Encoder (DDAE) was used instead of the standard MFCC, the suggested model shows significant improvement. The system's benefits include a less difficult encryption algorithm and a more capable and effective blockchain-based data transfer and storage system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.