Abstract

Reperfusion therapy for myocardial infarction is limited by a significant reocclusion rate and less optimal myocardial tissue perfusion due to excessive platelet accumulation and recruitment at the sites of vascular injury. We assessed the influence of a selective P2Y(12)-receptor antagonist (AR-C69931MX), in conjunction with thrombolytic therapy, on the prevention of platelet aggregation and thrombus formation. A canine coronary electrolytic injury thrombosis model was used. Tissue-type plasminogen activator (t-PA; 1 mg/kg in phase I, 0.5 mg/kg in phase II in the AR-C69931MX group, and 1 mg/kg in the placebo group in phase I and II) was administered 30 minutes after thrombus formation; either saline or AR-C69931MX (4 micro g x kg(-1) x min(-1)) was given to all animals intravenously 10 minutes before t-PA administration for a total of 2 hours. All animals received heparin (80 U/kg) as an intravenous bolus followed by a continuous infusion of 17 U x kg(-1) x h(-1). Myocardial tissue perfusion was evaluated by use of the colored microsphere technique and real-time myocardial contrast echocardiography. The incidences of reocclusion and cyclic flow variation were significantly decreased in the AR-C69931MX group (P<0.05). Myocardial tissue flow with AR-C69931MX treatment improved significantly at 20 and 120 minutes after reflow, whereas tissue flow with placebo remained at a level similar to that during occlusion (P<0.05). The adjunctive administration of AR-C69931MX blocked ADP-mediated platelet aggregation and recruitment and prevented platelet-mediated thrombosis, resulting in prolongation of reperfusion time and a decrease in reocclusion and cyclic flow variations. Importantly, myocardial tissue perfusion was significantly improved in the P2Y(12) antagonist group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.