Abstract

Abstract Bronchial asthma is associated with type 2 immune responses induced by components of adaptive as well as innate immunity. Although innate cytokines such as IL-25 have been shown to play a key role in development of airway hyperreactivity (AHR), little is known of innate molecules that regulate IL-25-mediated airway inflammation. We found that blockade of repulsive guidance molecule b (RGMb) in an experimental murine model of asthma blocked the development of AHR, a cardinal feature of asthma, and that RGMb is expressed on F4/80+CD11b+CD11cneg macrophages (RGMb+ macrophages), which accumulated in the lungs of OVA-sensitized and challenged mice, but not in naïve mice. Moreover, we found that a large fraction of the RGMb+ macrophages expressed the IL-25 receptor, IL-17RB, and produced IL-13. IL-25 was critical for the development of AHR in our model, since mice deficient in IL-17RB did not develop AHR. Finally, treatment with anti-RGMb mAb during the challenge phase of the protocol after allergen sensitization effectively prevented the development of AHR and airway inflammation, suggesting for the first time that RGMb+ cells, including RGMb+ macrophages, play critical roles in allergen-induced asthma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.