Abstract

In this study, a synthetic steroidal glycoside SBF-1 had strong and preferential antitumor effects on the human chronic myeloid leukemia (CML) cell line K562 and its imatinib-resistant form K562/G. SBF-1 induced apoptosis in both cell lines without any effect on cell cycle arrest. It also inhibited the activation of PI3K/Akt pathway members, such as PI3K and Akt, as well as downstream targets mTOR and Bcl-2. Moreover, the degradation of the Bcr-Abl protein was induced by SBF-1 in a concentration- and time-dependent manner. Using a pull-down assay, SBF-1 was found to bind to both Bcr-Abl and PTP1B and disrupted the interaction between them. SBF-1 triggered the degradation of Bcr-Abl through ubiquitination via the lysosome pathway. Taking together these findings, this study, for the first time, suggests that the blockade of the interaction between Bcr-Abl and PTP1B may be a feasible strategy for the treatment of CML, especially CML with resistance to Bcr-Abl kinase inhibitor imatinib. Our study also indicates that SBF-1 may serve as a leading compound for novel anti-CML therapeutic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.