Abstract

Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not known how blockade of GABAB receptors in the region affects anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to hyperactivity of LHb neurons and decreased the level of extracellular dopamine (DA) in the basolateral amygdala (BLA) compared to sham-lesioned rats. Intra-LHb injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both groups. Further, intra-LHb injection of CGP36216 decreased the firing rate of the neurons, and increased the GABA/glutamate ratio in the LHb and release of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 increased the firing rate of the neurons and decreased the GABA/glutamate ratio and release of DA and 5-HT in sham-lesioned and the lesioned rats. However, the doses of the antagonists producing these behavioral effects in the lesioned rats were lower than those in sham-lesioned rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in the lesioned rats. Collectively, these findings suggest that pre-synaptic and post-synaptic GABAB receptors in the LHb are involved in the regulation of anxiety-like behaviors, and degeneration of the nigrostriatal pathway up-regulates function and/or expression of these receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call