Abstract

The p38 mitogen-activated protein kinase (MAPK) pathway is a pro-inflammatory signal transduction pathway. The aim of this study was to examine the role of this pathway in acute renal inflammation. Immunostaining localized components of the p38 MAPK pathway (p38alpha, p-p38, p-ATF-2) in normal glomeruli, to podocytes, and occasional endothelial cells. This study identified an eightfold increase in glomerular activation of p38 MAPK (phosphorylated p38, p-p38) within 3 h of the induction of rat anti-glomerular basement membrane (GBM) glomerulonephritis and localized p-p38 and p-ATF-2 to infiltrating neutrophils, with increased staining of podocytes and endothelial cells. The relevance of these findings to human acute inflammatory renal disease was determined by examination of biopsy specimens. In patients with post-infectious glomerulonephritis, there was an increased number of positive p-p38 glomerular cells, including p-p38 staining of infiltrating neutrophils, compared with normal human kidney. In rats, administration of a specific p38 MAPK inhibitor, NPC 31145, before induction of anti-GBM disease prevented a loss of renal function and substantially reduced proteinuria. The reduction in renal injury was attributed to a 55% reduction in glomerular neutrophil infiltration and a 68% reduction in platelet accumulation. This was associated with an abrogation of glomerular P-selectin immunostaining and inhibition of glomerular P-selectin gene expression. In summary, this study has localized the components of the p38 MAPK pathway to cells in normal and diseased rat and human kidney and identified a number of important mechanisms by which signaling through the p38 MAPK pathway induces inflammatory renal disease. Blockade of the p38 pathway may be a novel therapeutic strategy for the treatment of acute renal inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call