Abstract

The aim of this study was to determine in intact and inflamed knee joints of the rat, the effect of the bradykinin (BK) B2 receptor antagonist fasitibant (MEN16132) on nociceptor mechanosensitivity and hyperalgesia. Joint afferent sensory fibers of the medial articular nerve of anesthetized animals were electrophysiologically recorded, measuring nerve impulse activity evoked by passive innocuous and noxious movements of the joint, in intact and kaolin and carrageenan-injected joints. Knee joints of rats were also acutely inflamed by intra-articular injection of carrageenan alone. Long term duration of fasitibant antinociceptive effects were behaviorally evaluated using the incapacitance test. BK (100μM) injected into the saphenous artery, induced excitation and sensitization of multi- and single unit recordings. Fasitibant (300μM) injected prior to BK, reduced its excitatory effects as well as the overall increase of movement-evoked activity resulting from repeated injections of BK. Fasitibant did not affect movement-evoked activity of sensory fibers of intact, non-inflamed knee joints. Intra-articular fasitibant (100μg/knee) significantly reduced the carrageenan-induced inflammatory hyperalgesia measured with the incapacitance test up to four days after treatment. This antinociceptive effect was not obtained with systemic endovenous injection of the drug. Fasitibant prevents B2 receptor-mediated activation and sensitization of peripheral joint afferents and the ensuing inflammatory hyperalgesia, and may be a useful, novel drug for arthritis pain treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call