Abstract

The t-SNAREs syntaxin1A and SNAP-25, i.e. the members of the complex involved in regulated exocytosis at synapses and neurosecretory cells, are delivered to their physiological site, the plasma membrane, when transfected into neurosecretion-competent cells, such as PC12 and AtT20. In contrast, when transfection is made into cells incompetent for neurosecretion, such as those of a defective PC12 clone and the NRK fibroblasts, which have no endogenous expression of these t-SNAREs, syntaxin1A (but neither two other syntaxin family members nor SNAP-25) remains stuck in the Golgi-TGN area with profound consequences to the cell: blockade of both membrane (SNAP-25, GAT-1) and secretory (chromogranin B) protein transport to the cell surface; progressive disassembly of the Golgi complex and TGN; ultimate disappearance of the latter structures, with intermixing of their markers (mannosidase II; TGN-38) with those of the endoplasmic reticulum (calreticulin) and with syntaxin1A itself. When, however, syntaxin 1A is transfected together with rbSec1, a protein known to participate in neurosecretory exocytosis via its dynamic interaction with the t-SNARE, neither the blockade nor the alterations of the Golgi complex take place. Our results demonstrate that syntaxin1A, in addition to its role in exocytosis at the cell surface, possesses a specific potential to interfere with intracellular membrane transport and that its interaction with rbSec1 is instrumental to its physiological function not only at the plasma membrane but also within the cell. At the latter site, the rbSec1-induced conversion of syntaxin1A into a form that can be transported and protects the cell from the development of severe structural and membrane traffic alterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.