Abstract

Mice fed high-fat diet (HFD) demonstrate obesity-related systemic insulin resistance (IR). Aim of this study is to clarify the role of interleukin (IL)-6 in IR in vivo focusing on skeletal muscle, adipose tissue and liver. Plasma markers of IR and hepatic IL-6 signalling were examined in eight-week HFD feeding C57/BL6 mice. Furthermore, IR-related molecules in skeletal muscles, adipose tissues and livers were investigated following a single injection of anti- IL-6 receptor neutralizing antibody (MR16-1) in two-week HFD feeding mice. To investigate the role of IL-6 in hepatic steatosis by prolonged HFD, hepatic triglyceride accumulation was assessed in eight-week HFD feeding mice with continuous MR16-1 treatment. High-fat diet for both 2 and 8 weeks elevated plasma IL-6, insulin and leptin, which were decreased by MR16-1 treatment. A single injection of MR16-1 ameliorated IR as assessed by glucose and insulin tolerance test, which may be attributable to upregulation of glucose transporter type 4 via phosphorylation of AMP-activated protein kinase as well as upregulation of peroxisome proliferator-activated receptor alpha in livers and, particularly, in skeletal muscles. MR16-1 also decreased mRNA expression of leptin and tumour necrosis factor-alpha and increased that of adiponectin in adipose tissue. High-fat diet for 8 weeks, not 2 weeks, induced hepatic steatosis and increased hepatic triglyceride content, all of which were ameliorated by MR16-1 treatment. Blockade of excessive IL-6 stimulus ameliorated HFD-induced IR in a skeletal muscle and modulated the production of adipokines from an early stage of NAFLD, leading to prevention of liver steatosis for a long term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.