Abstract

Interleukin-12 (IL-12) has been identified as a key inducer of a type 1 T-helper cell cytokine pattern, which is thought to contribute to the development of atherosclerosis. We sought to study the role of IL-12 in atherosclerosis by inhibition of IL-12 using a newly developed vaccination technique that fully blocks the action of IL-12. LDL receptor-deficient (LDLr(-/-)) mice were vaccinated against IL-12 by 5 intramuscular injections of IL-12-PADRE complex in combination with adjuvant oil-in-water emulsion (low dose)/MPL/QS21 every 2 weeks. Two weeks thereafter, atherogenesis was initiated in the carotid artery by perivascular placement of silicone elastomer collars. IL-12 vaccination resulted in the induction of anti-IL-12 antibodies that functionally blocked the action of IL-12 as determined in an IL-12 bioassay. Blockade of IL-12 by vaccination of LDLr(-/-) mice resulted in significantly reduced (68.5%; P<0.01) atherogenesis compared with control mice without a change in serum cholesterol levels. IL-12 vaccination also resulted in a significant decrease in intima/media ratios (66.7%; P<0.01) and in the degree of stenosis (57.8%; P<0.01). On IL-12 vaccination, smooth muscle cell and collagen content in the neointima increased 2.8-fold (P<0.01) and 4.2-fold (P<0.01), respectively. Functional blockade of endogenous IL-12 by vaccination resulted in a significant 68.5% reduction in atherogenesis in LDLr(-/-) mice. Vaccination against IL-12 also improved plaque stability, from which we conclude that the blockade of IL-12 by vaccination may be considered a promising new strategy in the treatment of atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.