Abstract

Atopic dermatitis (AD) is a common chronic skin inflammatory disease. Long-term use of topical corticosteroids in skin inflammation poses risks of systemic and local side effects. The NF-kappaB transcription factor family plays a central role in the progression and maintenance of AD. This study explores the possibility of using topical NF-kappaB Decoy as a novel therapeutic alternative for targeting Th1/Th2-driven skin inflammation in experimental AD. A high-affinity, topical NF-kappaB Decoy developed for human efficacy demonstrates: (i) efficient NF-kappaB Decoy penetration in pig skin, (ii) NF-kappaB Decoy nuclear localization in keratinocytes and key immune cells, and (iii) potent "steroid-like" efficacy in a chronic dust-mite antigen skin inflammation treatment model. NF-kappaB Decoy exerts its anti-inflammatory action through the effective inhibition of essential regulators of inflammation and by induction of apoptosis of key immune cells. Unlike betamethasone valerate (BMV), long-term NF-kappaB Decoy treatment does not induce skin atrophy. Moreover, topical NF-kappaB Decoy, in contrast to BMV, restores compromised stratum corneum integrity and barrier function. Steroid withdrawal causes rapid rebound of inflammation, while the NF-kappaB Decoy therapeutic benefit was maintained for weeks. Thus, topical NF-kappaB Decoy provides a novel mechanism of reducing chronic skin inflammation with improved skin homeostasis and minimal side effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call