Abstract
Leukotrienes are classical mediators of inflammatory response. New aspects of leukotriene function have recently been described. We examine here the previously unreported role that leukotrienes play in the regulation of cytokines in a murine model of histoplasmosis. We demonstrate that administration of MK 886, a leukotriene synthesis inhibitor, caused Histoplasma capsulatum-infected mice to die by the day 15 of infection, whereas the correlating death rate in untreated infected mice was 0%. Treating infected animals with MK 886 inhibited leukotriene synthesis but increased leukocyte recruitment to the lungs. Subsequent to this phenomenon, levels of tumor necrosis factor alpha, interleukin-1 (IL-1), IL-6, and KC chemoattractant cytokines and fungi in the lung parenchyma increased, as did inflammatory response. In contrast, IL-2, IL-5, IL-12, and gamma interferon cytokine levels actually decreased. Thus, murine response to pulmonary histoplasmosis may be leukotriene modulated. This finding may enable us to alter the course of the immune response and inflammation caused by histoplasmosis. The data from the present study suggest an important new strategy for immunologic or drug intervention in human patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.