Abstract

The involvement of the sympathetic nervous system (SNS) in the modulation of bone adaptation to its load-bearing demand remains controversial. This study tested the involvement of SNS in the adaptive response of trabecular and cortical bone to either external loading or disuse. External loading consisted of cyclic strain (40 cycles, peak 1500 μstrain) applied for 7 min, 3 days/week, while disuse was induced by unilateral sciatic neurectomy (SN). C57Bl/J6 mice, female, 9 weeks old, were subjected to loading or disuse for 2 weeks. Half of the loaded and SN mice were injected with the β-adrenergic antagonist, propranolol (PRO, 20 μg/g) 1 week before the start of loading or disuse and during all the duration of the experiment. MicroCT analysis of the tibiae showed that the applied load induced significant changes on both trabecular architecture and cortical geometry compared to the contralateral controls, indicating increased bone mass. In contrast, disuse markedly reduced trabecular and cortical indexes. However, these adaptive responses were not altered by PRO treatment. We further tested whether the lack of protective effect of PRO against disuse-induced bone loss was due to the very short duration of treatment by blocking SNS signaling for 8 weeks with either PRO (0.5 mg/ml in drinking water) or guanethidine sulfate (GS, 40 μg/g, injected). At the end of fourth week of treatment, mice underwent SN surgery so that disuse was induced for the remaining 4 weeks. Again, neither PRO nor GS treatments altered the disuse-induced bone loss in the neurectomized tibia. In addition, blockade of SNS signaling for either 3 or 8 weeks did not affect the basal trabecular bone architecture in control tibiae and in L4 vertebrae. This study shows that the mechano-adaptive response occurring in trabecular and cortical bone upon loading or disuse is not altered by inactivation of β-adrenergic signaling. Furthermore, sympathectomy had no effect on trabecular bone at different skeletal sites. This suggests that the osteo-regulatory action of β-adrenergic signaling is not involved in the bone mechano-adaptive response and must therefore affect other bone regulatory pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call