Abstract

Deregulated apoptosis is an identifying feature of myelodysplastic syndromes (MDS). Whereas apoptosis is increased in the bone marrow (BM) of low-risk MDS patients, progression to high-risk MDS correlates with an acquired resistance to apoptosis and an aberrant expression of BCL-2 proteins. To overcome the acquired apoptotic resistance in high-risk MDS, we investigated the induction of apoptosis by inhibition of pro-survival BCL-2 proteins using the BCL-2/-XL/-W inhibitor ABT-737 or the BCL-2-selective inhibitor ABT-199. We characterized a cohort of 124 primary human BM samples from MDS/secondary acute myeloid leukemia (sAML) patients and 57 healthy, age-matched controls. Inhibition of anti-apoptotic BCL-2 proteins was specifically toxic for BM cells from high-risk MDS and sAML patients, whereas low-risk MDS or healthy controls remained unaffected. Notably, ABT-737 or ABT-199 treatment was capable of targeting the MDS stem/progenitor compartment in high-risk MDS/sAML samples as shown by the reduction in CD34(+) cells and the decreased colony-forming capacity. Elevated expression of MCL-1 conveyed resistance against both compounds. Protection by stromal cells only partially inhibited induction of apoptosis. Collectively, our data show that the apoptotic resistance observed in high-risk MDS/sAML cells can be overcome by the ABT-737 or ABT-199 treatment and implies that BH3 mimetics might delay disease progression in higher-risk MDS or sAML patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call