Abstract

Traumatic brain injury (TBI) causes a wide spectrum of consequences, such as microglial activation, cerebral inflammation, and focal and diffuse brain injury, as well as functional impairment. In this study we aimed to investigate the effects of acute treatment with minocycline as an inhibitor of microglial activation on cerebral focal and diffuse lesions, and on the spontaneous locomotor activity following TBI. The weight-drop model was used to induce TBI in mice. Microglial activation and diffuse axonal injury (DAI) were detected by immunohistochemistry using CD11b and ss-amyloid precursor protein (ss-APP) immunolabeling, respectively. Focal injury was determined by the measurement of the brain lesion volume. Horizontal and vertical locomotor activities were measured for up to 12 weeks post-injury by an automated actimeter. Minocycline or vehicle were administered three times post-insult, at 5 min (90 mg/kg i.p.), 3 h, and 9 h post-TBI (45 mg/kg i.p.). Minocycline treatment attenuated microglial activation by 59% and reduced brain lesion volume by 58%, yet it did not affect DAI at 24 h post-TBI. More interestingly, minocycline significantly decreased TBI-induced locomotor hyperactivity at 48 h post-TBI, and its effect lasted for up to 8 weeks. Taken together, the results indicate that microglial activation appears to play an important role in the development of TBI-induced focal injury and the subsequent locomotor hyperactivity, and its short-term inhibition provides long-lasting functional recovery after TBI. These findings emphasize the fact that minocycline could be a promising new therapeutic strategy for head-injured patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.