Abstract

Remodeling occurs after myocardial infarction (MI), leading to fibrosis, dysfunction, and ventricular tachycardias (VTs). Adenosine via the A2B adenosine receptor (A2BAdoR) has been implicated in promoting fibrosis. To determine the effects of GS-6201, a potent antagonist of the A2BAdoR, on arrhythmogenic and functional cardiac remodeling after MI. Rats underwent ischemia-reperfusion MI and were randomized into 4 groups: control (treated with vehicle), angiotensin-converting enzyme inhibitor (treated with enalapril 1 day after MI), GS-6201-1d (treated with GS-6201 1 day after MI), GS-6201-1w (treated with GS-6201 administered 1 week after MI) . Echocardiography was performed at baseline and 1 and 5 weeks after MI. Optical mapping, VT inducibility, and histologic analysis were conducted at follow-up. Treatment with the angiotensin-converting enzyme inhibitor improved ejection fraction (57.8% ± 2.5% vs 43.3% ± 1.7% in control; P < .01), but had no effect on VT inducibility. Treatment with GS-6201 improved ejection fraction (55.6% ± 2.6% vs 43.3% ± 1.7% in control; P < .01) and decreased VT inducibility (9.1% vs 68.4% in control; P < .05). Conduction velocities were significantly higher at border and infarct zones in hearts of rats treated with GS-6201 than in those of other groups. The conduction heterogeneity index was also significantly lower in hearts of rats treated with GS-6201. Histologic analysis showed that while both GS-6201 and enalapril decreased fibrosis in the noninfarct zone, only GS-6201 reduced the heterogeneity of fibrosis at the border, which is consistent with its effect on VT reduction. Treatment with an A2BAdoR antagonist at 1 week results in the improvement in cardiac function and decreased substrate for VT. The inhibition of fibrogenesis by A2BAdoR antagonists may be a new target for the prevention of adverse remodeling after MI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.