Abstract

Nitric oxide (NO) synthase (NOS), the enzyme that converts arginine into citrulline plus NO, the latter a highly active free radical, occurs in a large number of neurons in the brain, including certain neurons in the hypothalamus. Our previous experiments have shown that norepinephrine (NE)-induced prostaglandin E2 (PGE2) release from medial basal hypothalamic explants (MBH) is mediated by NO. Because release of luteinizing hormone (LH)-releasing hormone (LHRH) is also driven by NE and PGE2, we hypothesized that NO controls pulsatile release of LHRH in vivo, which in turn induces pulsatile LH release. Indeed, in vivo and in vitro experiments using an inhibitor of NOS (NG-monomethyl-L-arginine; NMMA) demonstrated that pulsatile LH release is mediated by NO; LHRH release in vitro is also mediated by this free radical. Cytokines that are released from cells of the immune system during infection also inhibit LHRH release. We compared the action of one such cytokine, interleukin-1 alpha (IL-1 alpha), on LHRH release with that of substances which inhibit or induce NO release. Microinjection of IL-1 alpha (0.06 pmol in 2 microliters) into the third cerebral ventricle (3V) of conscious, castrated male rats had an action similar to that of 3V microinjection of NMMA (1 mg in 5 microliters): it blocked pulsatile LH, but not follicle-stimulating hormone (FSH) release. The only difference between the responses to NMMA and IL-1 alpha was that the latency to onset was greater with IL-1 alpha.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call