Abstract

Maximum margin criterion (MMC) is a well-known method for feature extraction and dimensionality reduction. However, MMC is based on vector data and fails to exploit local characteristics of image data. In this paper, we propose a two-dimensional generalized framework based on a block-wise approach for MMC, to deal with matrix representation data, that is, images. The proposed method, namely, block-wise two-dimensional maximum margin criterion (B2D-MMC), aims to find local subspace projections using unilateral matrix multiplication in each block set, such that in the subspace a block is close to those belonging to the same class but far from those belonging to different classes. B2D-MMC avoids iterations and alternations as in current bilateral projection based two-dimensional feature extraction techniques by seeking a closed form solution of one-side projection matrix for each block set. Theoretical analysis and experiments on benchmark face databases illustrate that the proposed method is effective and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.