Abstract

Motivated by recently developed threshold rules for wavelet estimators, we suggest threshold methods for general kernel density estimators, including those of classical Rosenblatt–Parzen type. Thresholding makes kernel methods competitive in terms of their adaptivity to a wide variety of aberrations in complex signals. It is argued that term-by-term thresholding does not always produce optimal performance, since individual coefficients cannot be estimated sufficiently accurately for reliable decisions to be made. Therefore, we suggest grouping coefficients into blocks and making simultaneous threshold decisions about all coefficients within a given block. It is argued that block thresholding has a number of advantages, including that it produces adaptive estimators which achieve minimax-optimal convergence rates without the logarithmic penalty that is sometimes associated with term-by-term thresholding. More than this, the convergence rates are achieved over large classes of functions with discontinuities, indeed with a number of discontinuities that diverges polynomially fast with sample size. These results are also established for block thresholded wavelet estimators, which, although they can be interpreted within the kernel framework, are often most conveniently constructed in a slightly different way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.