Abstract

ABSTRACTWe study the maxiset performance of a large collection of block thresholding wavelet estimators, namely the horizontal block thresholding family. We provide sufficient conditions on the choices of rates and threshold values to ensure that the involved adaptive estimators obtain large maxisets. Moreover, we prove that any estimator of such a family reconstructs the Besov balls with a near‐minimax optimal rate that can be faster than the one of any separable thresholding estimator. Then, we identify, in particular cases, the best estimator of such a family, that is, the one associated with the largest maxiset. As a particularity of this paper, we propose a refined approach that models method‐dependent threshold values. By a series of simulation studies, we confirm the good performance of the best estimator by comparing it with the other members of its family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.