Abstract
Direct discretization of continuum kinetic equations, like the Vlasov equation, are under-utilized because the distribution function generally exists in a high-dimensional (>3D) space and computational cost increases geometrically with dimension. We propose to use high-order finite-volume techniques with block-structured adaptive mesh refinement (AMR) to reduce the computational cost. The primary complication comes from a solution state comprised of variables of different dimensions. We develop the algorithms required to extend standard single-dimension block structured AMR to the multi-dimension case. Specifically, algorithms for reduction and injection operations that transfer data between mesh hierarchies of different dimensions are explained in detail. In addition, modifications to the basic AMR algorithm that enable the use of high-order spatial and temporal discretizations are discussed. Preliminary results for a standard 1D+1V Vlasov–Poisson test problem are presented. Results indicate that there is potential for significant savings for some classes of Vlasov problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.