Abstract

The stochastic gradient (SG) method can quickly solve a problem with a large number of components in the objective, or a stochastic optimization problem, to a moderate accuracy. The block coordinate descent/update (BCD) method, on the other hand, can quickly solve problems with multiple (blocks of) variables. This paper introduces a method that combines the great features of SG and BCD for problems with many components in the objective and with multiple (blocks of) variables. This paper proposes a block SG (BSG) method for both convex and nonconvex programs. BSG generalizes SG by updating all the blocks of variables in the Gauss--Seidel type (updating the current block depends on the previously updated block), in either a fixed or randomly shuffled order. Although BSG has slightly more work at each iteration, it typically outperforms SG because of BSG's Gauss--Seidel updates and larger step sizes, the latter of which are determined by the smaller per-block Lipschitz constants. The convergence of BSG is es...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.