Abstract
Multicomponent alloys are gaining significance as drivers of technological breakthroughs especially in structural and energy storage materials. The vast configuration space of these materials prohibit computational modeling using first-principles based methods alone. The cluster expansion (CE) method is the most widely used tool for modeling configurational disorder in alloys. CE relies on machine learning algorithms to train Hamiltonians and uses first-principles calculated data as training sets. In this paper we present a new compressive sensing-based algorithm for the efficient construction of CE Hamiltonians of multicomponent alloys. Our algorithm constructs highly sparse and physically reasonable models from a carefully selected small training set of alloy structures. Compared to conventional fitting algorithms, the algorithm achieves more than 50% reduction in the training set size. The resultant sparse models can sample the configuration space at least 3 × faster. We demonstrate this algorithm on 4 different alloy systems, namely Ag–Au, Ag–Au–Cu, Ag–Au–Cu–Pd and (Ge,Sn)(S,Se,Te).The sparse CE models for these alloys can rapidly reproduce known ground state orderings and order-disorder transitions. Our method can truly enable high-throughput multicomponent alloy thermodynamics by reducing the cost associated with model construction and configuration sampling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.