Abstract

This article considers the recovery of low-rank matrices via a convex nuclear-norm minimization problem and presents two null space properties (NSP) which characterize uniform recovery for the case of block-diagonal matrices and block-diagonal positive semidefinite matrices. These null-space conditions turn out to be special cases of a new general setup, which allows to derive the mentioned NSPs and well-known NSPs from the literature. We discuss the relative strength of these conditions and also present a deterministic class of matrices that satisfies the block-diagonal semidefinite NSP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.