Abstract

The horizontal wavenumbers and modal depth functions are estimated by block sparse Bayesian learning (BSBL) for broadband signals received by a vertical line array in shallow-water waveguides. The dictionary matrix consists of multi-frequency modal depth functions derived from shooting methods given a large set of hypothetical horizontal wavenumbers. The dispersion relation for multi-frequency horizontal wavenumbers is also taken into account to generate the dictionary. In this dictionary, only a few of the entries are used to describe the pressure field. These entries represent the modal depth functions and associated wavenumbers. With the constraint of block sparsity, the BSBL approach is shown to retrieve the horizontal wavenumbers and corresponding modal depth functions with high precision, while a priori knowledge of sea bottom, moving source, and source locations is not needed. The performance is demonstrated by simulations and experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.