Abstract

AbstractWilliamson’s theorem states that for any $2n \times 2n$ real positive definite matrix A, there exists a $2n \times 2n$ real symplectic matrix S such that $S^TAS=D \oplus D$ , where D is an $n\times n$ diagonal matrix with positive diagonal entries known as the symplectic eigenvalues of A. Let H be any $2n \times 2n$ real symmetric matrix such that the perturbed matrix $A+H$ is also positive definite. In this paper, we show that any symplectic matrix $\tilde {S}$ diagonalizing $A+H$ in Williamson’s theorem is of the form $\tilde {S}=S Q+\mathcal {O}(\|H\|)$ , where Q is a $2n \times 2n$ real symplectic as well as orthogonal matrix. Moreover, Q is in symplectic block diagonal form with the block sizes given by twice the multiplicities of the symplectic eigenvalues of A. Consequently, we show that $\tilde {S}$ and S can be chosen so that $\|\tilde {S}-S\|=\mathcal {O}(\|H\|)$ . Our results hold even if A has repeated symplectic eigenvalues. This generalizes the stability result of symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [Linear Algebra Appl., 525:45–58, 2017].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.