Abstract

Research on clothing related CAD is blooming rapidly in the last two decades. It speeds up the product development process significantly and shortens the time to market of fashion products. Although many important results have been obtained, particularly in the computer graphics community, the textile industry is somehow reluctance to adopt these results in actual apparel manufacturing. The main concern is the accuracy of the resulted patterns, because the pattern generation processes ignored some important textile material and manufacturing constraints. This paper introduces a method for generating 2D block patterns from 3D scanned body. A parameterization process is first conducted on a scanned body to create a parameterized model, represented by horizontal B-spline curves. A basic wire-frame aligned with body features is then established based on the parameterized model. Proper clothing ease is carefully incorporated into the model by scaling the wireframe to accomplish the desired fit. Based on the deformed wireframe, a 3D flattenable garment is modeled by boundary triangulation. The main contribution of the proposed method is that the created 3D garment blocks are geometrically flattenable to produce accurate 2D patterns with optimized ease distribution to ensure garment fit. The proposed method is validated and compared to two conventional block patternmaking methods. The experimental results indicate that the proposed method is easy to implement and can generate patterns with satisfactory fit. Furthermore, the method can be used to create fit-ensured mass-customized apparel product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.