Abstract

The venom of the wasp Habrobracon hebetor presynaptically blocks excitatory but not inhibitory neuromuscular transmission at locust skeletal muscle. Its mode of action on excitatory motor nerve terminals has been studied at the retractor unguis muscle of Schistocerca by means of ultrastructural stereology. Paralysed and unparalysed preparations, either resting or stimulated for 7 min at 20 Hz, were compared. Paralysis does not cause structural damage to the nerve terminals but prevents the depletion of vesicles occurring upon nerve stimulation in the controls. Prolonged paralysis leads to an increase in the number and the size of vesicles resulting in an increase of total membrane per terminal cross-section by about 33% after 2 days. Stimulation causes swelling of mitochondria both in controls and in paralysed preparations, resulting from a rise of intraterminal [Ca 2+] as is indicated by the absence of the swelling if extracellular Ca 2+ is replaced by Mg 2+. In addition, stimulation leads to a reduction of vesicle size, an increase in the area of axolemma and in the number of cisternae and of profiles of the smooth endoplasmic reticulum in controls but not in paralysed preparations. However, neither in controls nor in paralysed preparations is the total amount of membrane per teminal cross-section affected by stimulation. Under paralysis, vesicles tend to stick to the presynaptic membrane. It is concluded that Habrobracon venom does not block the depolarization-dependent Ca 2+-influx into the nerve terminal and that it is unlikely to interfere with some transmitter-related process. Rather, the venom seems to block vesicle exocytosis itself. The results lend further support to the view that in insect neuromuscular synapses exocytosis is the mechanism whereby transmitter quanta are released.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.