Abstract

The effects of beta-amyloid precursor protein (beta-APP) fragments on plasticity of glutamtatergic synaptic transmission were examined in the hippocampus of urethane anaesthetized rats. I.c.v. injection of beta-amyloid (A beta) 1-40 and 1-42 and the C-terminal fragment CT105 greatly shortened the duration of high frequency stimulation-induced long-term potentiation (LTP) of field excitatory postsynaptic potentials in the CA1 area. Whereas in vehicle injected animals LTP was stable over a 5 h recording period, doses of these peptides (A beta 1-40, 0.4 and 3.5 nmol; A beta1-42, 0.01 nmol; CT105, 0.05 nmol) which did not affect baseline synaptic transmission abolished LTP within 3-5 h. The reduced duration of this form of synaptic plasticity may contribute to the cognitive deficits in Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.