Abstract

We propose using a set of blocks to approximate geologically complex media that cannot be well described by layered models. Interfaces between blocks are triangulated to prevent overlaps or gaps often produced by other techniques, such as B-splines, and to speed up the calculation of intersection points between a ray and block interfaces. We also use a smoothing algorithm to make the normal vector of each triangle continuous at the boundary, so that ray tracing can be performed with stability and accuracy. Based on Fermat’s principle, we perturb an initial raypath between two points, generally obtained by shooting, with a segmentally iterative ray-tracing (SIRT) method. Intersection points on a ray are updated in sequence, instead of simultaneously, because the number of new intersection points may be increased or decreased during the iteration process. To improve convergence speed, we update the intersection points by a first-order explicit formula instead of traditional iterative methods. Only transmitted and reflected waves are considered. Numerical tests demonstrate that the combination of block modeling and segmentally iterative ray tracing is effective in implementing kinematic two-point ray tracing in complex 3D media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.