Abstract

Stewart’s Krylov–Schur algorithm offers two advantages over Sorensen’s implicitly restarted Arnoldi (IRA) algorithm. The first is ease of deflation of converged Ritz vectors, the second is the avoidance of the potential forward instability of the QR algorithm. In this paper we develop a block version of the Krylov–Schur algorithm for symmetric eigenproblems. Details of this block algorithm are discussed, including how to handle rank deficient cases and how to use varying block sizes. Numerical results on the efficiency of the block Krylov–Schur method are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.