Abstract

We introduce a fast block-iterative maximum a posteriori (MAP) reconstruction algorithm and apply it to four-dimensional reconstruction of gated SPECT perfusion studies. The new algorithm, called RBI-MAP, is based on the rescaled block iterative EM (RBI-EM) algorithm. We develop RBI-MAP based on similarities between the RBI-EM, ML-EM and MAP-EM algorithms. RBI-MAP requires far fewer iterations than MAP-EM, and so should result in acceleration similar to that obtained from using RBI-EM or OS-EM as opposed to ML-EM. When complex four-dimensional clique structures are used in the prior, however, evaluation of the smoothing prior dominates the processing time. We show that a simple scheme for updating the prior term in the heart region only for RBI-MAP results in savings in processing time of a factor of six over MAP-EM. The RBI-MAP algorithm incorporating 3D collimator-detector response compensation is demonstrated on a simulated Tc gated perfusion study. Results of RBI-MAP are compared with RBI-EM followed by a 4D linear filter. For the simulated study, we find that RBI-MAP provides consistently higher defect contrast for a given degree of noise smoothing than does filtered RBI-EM. This is an indication that RBI-MAP smoothing does less to degrade resolution gained from 3D detector response compensation than does a linear filter. We conclude that RBI-MAP can provide smooth four-dimensional reconstructions with good visualization of heart structures in clinically realistic processing times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.