Abstract
In this article, we discuss two sets of new finite difference methods of order two and four using 19 and 27 grid points, respectively over a cubic domain for solving the three dimensional nonlinear elliptic biharmonic problems of first kind. For both the cases we use block iterative methods and a single computational cell. The numerical solution of (∂u/∂n) are obtained as by-product of the methods and we do not require fictitious points in order to approximate the boundary conditions. The resulting matrix system is solved by the block iterative method using a tri-diagonal solver. In numerical experiments the proposed methods are compared with the exact solutions both in singular and non-singular cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.