Abstract

We devise a framework for proving tight lower bounds under the counting exponential-time hypothesis #ETH introduced by Dell et al. (2014) [18]. Our framework allows us to convert classical #P-hardness results for counting problems into tight lower bounds under #ETH, thus ruling out algorithms with running time 2o(n) on graphs with n vertices and O(n) edges. As exemplary applications of this framework, we obtain tight lower bounds under #ETH for the evaluation of the zero-one permanent, the matching polynomial, and the Tutte polynomial on all non-easy points except for one line. This remaining line was settled very recently by Brand et al. (2016) [24].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.